The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Quantitative Transcription Factor Analysis of Undifferentiated Single Human Embryonic Stem Cells

Author

  • Anders Stahlberg
  • Martin Bengtsson
  • Martin Hemberg
  • Henrik Semb

Summary, in English

BACKGROUND: Human embryonic stem cells (hESCs) require expression of transcription factor genes POU5F1 (POU class 5 homeobox 1), NANOG (Nanog homeobox), and SOX2 [SRY (sex determining region Y)-box 2] to maintain their capacity for self-renewal and pluripotency. Because of the heterogeneous nature of cell populations, it is desirable to study the gene regulation in single cells. Large and potentially important fluctuations in a few cells cannot be detected at the population scale with microarrays or sequencing technologies. We used single-cell gene expression profiling to study cell heterogeneity in hESCs. METHODS: We collected 47 single hESCs from cell line SA121 manually by glass capillaries and 57 single hESCs from cell line HUES3 by flow cytometry. Single hESCs were lysed and reverse-transcribed. Reverse-transcription quantitative real-time PCR was then used to measure the expression POU5F1, NANOG, SOX2, and the inhibitor of DNA binding genes ID1, ID2, and ID3. A quantitative noise model was used to remove measurement noise when pairwise correlations were estimated. RESULTS: The numbers of transcripts per cell varied >100-fold between cells and showed lognormal features. POU5F1 expression positively correlated with ID1 and ID3 expression (P < 0.05) but not with NANOG or SOX2 expression. When we accounted for measurement noise, SOX2 expression was also correlated with ID1, ID2, and NANOG expression (P < 0.05). CONCLUSIONS: We demonstrate an accurate method for transcription profiling of individual hESCs. Cell-to-cell variability is large and is at least partly nonrandom because we observed correlations between core transcription factors. High fluctuations in gene expression may explain why individual cells in a seemingly undifferentiated cell population have different susceptibilities for inductive cues. (C) 2009 American Association for Clinical Chemistry

Department/s

Publishing year

2009

Language

English

Pages

2162-2170

Publication/Series

Clinical Chemistry

Volume

55

Issue

12

Document type

Journal article

Publisher

American Association for Clinical Chemistry

Topic

  • Biochemistry and Molecular Biology

Status

Published

Research group

  • Islet cell physiology

ISBN/ISSN/Other

  • ISSN: 0009-9147