The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Electrical wiring of live, metabolically enhanced Bacillus subtilis cells with flexible osmium-redox polymers.

Author

Summary, in English

The present study explores genetic engineering of the respiratory chain and the application of two different flexible osmium redox polymers to achieve efficient electric communication between the gram-positive organism Bacillus subtilis and an electrode. Poly(1-vinylimidazole)(12)-[Os-(4,4'-dimethyl-2,2'-bipyridyl)(2)Cl(2)](+/2+) (osmium redox polymer I) and poly(vinylpyridine)-[Os-(N,N'-methylated-2,2'-biimidazole)(3)](2+/3+) (osmium redox polymer II) were investigated for efficient electrical "wiring" of viable gram-positive bacterial cells to electrodes. Using a B. subtilis strain that overproduces succinate/quinone oxidoreductase (respiratory complex II), we were able to improve the current response several fold using succinate as substrate, in both batch and flow analysis modes, and using gold and graphite electrodes. The efficiency of the osmium redox polymer, working as electron transfer mediator between the cells and the electrode, was compared with that of a soluble mediator (hexacyanoferrate). The results demonstrated that mediators did not have to pass the cytosolic membrane to bring about an efficient electronic communication between bacterial cells with a thick cell wall and electrodes.

Publishing year

2009

Language

English

Pages

16171-16176

Publication/Series

Journal of the American Chemical Society

Volume

131

Issue

44

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Biological Sciences

Status

Published

Research group

  • Microbiology Group

ISBN/ISSN/Other

  • ISSN: 1520-5126