The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Assembling ferromagnetic single-electron transistors by atomic force microscopy

Author

Summary, in English

We demonstrate the assembly of nanoscale ferromagnetic single-electron transistors using atomic force microscopy for imaging as well as for nanoscale manipulation. A single 30 nm Au disc, forming the central island of the transistor, is manipulated with angstrom precision into the gap between a plasma-oxidized Ni source and drain electrodes. The tunnel resistances can be tuned in real time during the device fabrication by repositioning the Au disc. Transport measurements reveal long-term stable single-electron transistor characteristics at 4.2 K. The well-controlled devices with very small central islands facilitate future in-depth studies of the interplay between Coulomb blockade, spin-dependent tunnelling and spin accumulation in ferromagnetic single-electron transistors at elevated temperatures.

Publishing year

2007

Language

English

Publication/Series

Nanotechnology

Volume

18

Issue

5

Document type

Journal article

Publisher

IOP Publishing

Topic

  • Nano Technology

Status

Published

ISBN/ISSN/Other

  • ISSN: 0957-4484