The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

High-speed biomarker identification utilizing porous silicon nanovial arrays and MALDI-TOF mass spectrometry

Author

Summary, in English

Speed and accuracy are crucial prerequisites in the application of proteomic methods to clinical medicine. We describe a microfluidic-based nanovial array for rapid proteolytic processing linked to MALDI-TOF MS. This microscale format consumes only minute amounts of sample, and it is compatible with rapid bioanalytical protocols and high-sensitivity readouts. Arrays of vials (300 mu m in diameter and 25 mu m deep), isotropically etched in silicon wafers were electrochemically porosified. Automated picoliter microdispensing was employed for precise fluid handling in the microarray format. Vials were prefilled with trypsin solution, which was allowed to dry. Porosified and nonporosified nanovials were compared for trypsin digestion and subsequent MS identification of three model proteins: lysozyme, alcohol dehydrogenase, and serum albumin at levels of 100 and 20 fmol. In an effort to assess the rapid digestion platform in a context of putative clinical applications, two prostate cancer biomarkers, prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2), were digested at levels of 100 fmol (PSA), 20 fmol (PSA) and 8 fmol (hK2). All biomarker digestions were completed in less than 30 s, with successful MS identification in the porous nanovial setting.

Publishing year

2006

Language

English

Pages

1093-1103

Publication/Series

Electrophoresis

Volume

27

Issue

5-6

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Medicinal Chemistry

Keywords

  • nanovial arrays
  • high-speed digestion
  • MALDI-TOF MS
  • porous silicon
  • trypsin digestion

Status

Published

Research group

  • Clinical Chemistry, Malmö

ISBN/ISSN/Other

  • ISSN: 0173-0835