The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Ten years of AFLP in ecology and evolution: why so few animals?

Author

Summary, in English

Researchers in the field of molecular ecology and evolution require versatile and low-cost genetic typing methods. The AFLP (amplified fragment length polymorphism) method was introduced 10 years ago and shows many features that fulfil these requirements. With good quality genomic DNA at hand, it is relatively easy to generate anonymous multilocus DNA profiles in most species and the start-up time before data can be generated is often less than a week. Built-in dynamic, yet simple modifications make it possible to find a protocol suitable to the genome size of the species and to screen thousands of loci in hundreds of individuals for a relatively low cost. Until now, the method has primarily been applied in studies of plants, bacteria and fungi, with a strong bias towards economically important cultivated species and their pests. In this review we identify a number of research areas in the study of wild species of animals where the AFLP method, presently very much underused, should be a very valuable tool. These aspects include classical problems such as studies of population genetic structure and phylogenetic reconstructions, and also new challenges such as finding markers for genes governing adaptations in wild populations and modifications of the protocol that makes it possible to measure expression variation of multiple genes (cDNA-AFLP) and the distribution of DNA methylation. We hope this review will help molecular ecologists to identify when AFLP is likely to be superior to other more established methods, such as microsatellites, SNP (single nucleotide polymorphism) analyses and multigene DNA sequencing.

Publishing year

2005

Language

English

Pages

2899-2914

Publication/Series

Molecular Ecology

Volume

14

Issue

10

Document type

Journal article review

Publisher

Wiley-Blackwell

Topic

  • Biological Sciences

Status

Published

Research group

  • Molecular Ecology and Evolution Lab

ISBN/ISSN/Other

  • ISSN: 0962-1083