The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Transcriptional analysis of the pheromone gland of the turnip moth, Agrotis segetum (Noctuidae), reveals candidate genes involved in pheromone production.

Author

Summary, in English

Moths generally rely on pheromone communication for mate finding. The pheromone components of most moths are produced by a common pathway of fatty-acid biosynthesis coupled with species-specific modifications of the final products. Some genes involved in moth pheromone production have previously been described, whereas others remain to be characterized and thus the molecular mechanisms accounting for the production of species-specific blends are far from understood. The turnip moth, Agrotis segetum, has a multicomponent pheromone, consisting of at least four components derived from palmitic and stearic acid. Different populations produce and respond to different pheromone blends, which makes this species an excellent model for research on genes and molecular mechanisms involved in moth pheromone production. For this purpose, we performed an expressed sequence tag (EST) analysis of two cDNA libraries, one representing the female pheromone gland and the other representing the remainder of the insect body. Among 2285 ESTs analysed altogether, we identified a unigene set of 707 putative gene representatives. The comparative distribution of those in the two libraries showed the transcriptomes of the tissues to be clearly different. One third of the gene representatives were exclusively found in the pheromone gland. From sequence homology to public database information we assigned putative functional roles for a majority of the unigenes and then compared functional profiles of the two tissues. In the set of ESTs more abundant in the pheromone gland library, we found homologues of an acyl-CoA Delta11-desaturase, a G-protein subunit, a chemosensory protein as well as a juvenile hormone binding protein.

Publishing year

2008

Language

English

Pages

73-85

Publication/Series

Insect Molecular Biology

Volume

17

Issue

1

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Biological Sciences

Keywords

  • RNA
  • Messenger: biosynthesis
  • Messenger: genetics
  • Sex Attractants: biosynthesis
  • Sex Attractants: genetics
  • Moths: metabolism
  • Moths: genetics

Status

Published

Project

  • The pheromone brewery

Research group

  • Microbial Ecology
  • Pheromone Group
  • Molecular Ecology and Evolution Lab

ISBN/ISSN/Other

  • ISSN: 1365-2583