The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Periodic motion planning for virtually constrained Euler-Lagrange systems

Author

Summary, in English

The paper suggests an explicit form of a general integral of motion for some classes of dynamical systems including n-degrees of freedom Euler-Lagrange systems subject to (n - 1) virtual holonomic constraints. The knowledge of this integral allows to extend the classical results due to Lyapunov for detecting a presence of periodic solutions for a family of second order systems, and allows to solve the periodic motion planning task for underactuated Euler-Lagrange systems, when there is only one not directly actuated generalized coordinate. As an illustrative example, we have shown how to create a periodic oscillation of the pendulum for a cart-pendulum system and how then to make them orbitally exponentially stable following the machinery developed in [A. Shiriaev, J. Perram, C. Canudas-de-Wit, Constructive tool for an orbital stabilization of underactuated nonlinear systems: virtual constraint approach, IEEE Trans. Automat. Control 50 (8) (2005) 1164-1176]. The extension here also considers time-varying virtual constraints. (C) 2006 Elsevier B.V. All rights reserved.

Publishing year

2006

Language

English

Pages

900-907

Publication/Series

Systems & Control Letters

Volume

55

Issue

11

Document type

Journal article

Publisher

Elsevier

Topic

  • Control Engineering

Keywords

  • holonomic constraints
  • motion planning under-actuated Euler-Lagrange systems
  • virtual
  • Lyapunov lemma
  • periodic solutions

Status

Published

ISBN/ISSN/Other

  • ISSN: 0167-6911