The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The Modern RNP World of Eukaryotes

Author

Summary, in English

Eukaryote gene expression is mediated by a cascade of RNA functions that regulate, process, store, transport, and translate RNA transcripts. The RNA network that promotes this cascade depends on a large cohort of proteins that partner RNAs; thus, the modern RNA world of eukaryotes is really a ribonucleoprotein (RNP) world. Features of this "RNP infrastructure" can be related to the high cytosolic density of macromolecules and the large size of eukaryote cells. Because of the densely packed cytosol or nucleoplasm (with its severe restriction on diffusion of macromolecules), partitioning of the eukaryote cell into functionally specialized compartments is essential for efficiency. This necessitates the association of RNA and protein into large RNP complexes including ribosomes and spliceosomes. This is well illustrated by the ubiquitous spliceosome for which most components are conserved throughout eukaryotes and which interacts with other RNP-based machineries. The complexes involved in gene processing in modern eukaryotes have broad phylogenetic distributions suggesting that the common ancestor of extant eukaryotes had a fully evolved RNP network. Thus, the eukaryote genome may be uniquely informative about the transition from an earlier RNA genome world to the modern DNA genome world.

Publishing year

2009

Language

English

Pages

597-604

Publication/Series

Journal of Heredity

Volume

100

Issue

5

Document type

Journal article review

Publisher

Oxford University Press

Topic

  • Biological Sciences

Keywords

  • RNA world
  • RNA infrastructure
  • molecular evolution
  • origin of eukaryotes

Status

Published

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 0022-1503