The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Surface core-level shifts on Ge(111)c(2 x 8): Experiment and theory

Author

Summary, in English

Combining high-resolution photoelectron spectroscopy and density functional theory (DFT) calculations, 3d photoemission line shape and surface core-level shifts have been reinvestigated on the Ge(111)c(2 x 8) surface. It is found that 3d spectra include, in addition to the bulk and three surface-shifted components reported in literature, a component that was not identified in earlier measurements with a lower resolution. The detailed interpretation of these spectra and their line shape is made on the basis of DFT calculations. It is shown that the lowest binding energy component is due to the rest atoms. The higher binding energy emission is caused by the adatoms and the third-layer atoms that are below the adatoms. Finally, the two other surface components originate from the first- and second-layer atoms. The screening effects in the Ge(111)c(2 x 8) are discussed.

Department/s

Publishing year

2011

Language

English

Publication/Series

Physical Review B (Condensed Matter and Materials Physics)

Volume

83

Issue

24

Document type

Journal article

Publisher

American Physical Society

Topic

  • Physical Sciences
  • Natural Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1098-0121