The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner

Author

  • Michael P. B. Sandrini
  • Anders Ranegaard Clausen
  • Stephen L. W. On
  • Frank M. Aarestrup
  • Birgitte Munch-Petersen
  • Jure Piskur

Summary, in English

Objectives: To investigate the bactericidal activity of antiviral and anticancer nucleoside analogues against a variety of pathogenic bacteria and characterize the activating enzymes, deoxyribonucleoside kinases (dNKs). Methods: Several FDA-approved nucleoside analogue drugs were screened for their potential bactericidal activity against several clinical bacterial isolates and type strains. We identified and subcloned the genes coding for putative deoxyribonucleoside kinases in Escherichia coli, Pasteurella multocida, Salmonella enterica, Yersinia enterocolitica, Bacillus cereus, Clostridium perfringens and Listeria monocytogenes. These genes were tested for their ability to increase the susceptibility of a dNK-deficient E. coli strain to various analogues. We overexpressed, purified and characterized the substrate specificity and kinetic properties of the recombinant enzymes from S. enterica and B. cereus. Results: The tested Gram-negative bacteria were susceptible to 3 '-azido-3 '-deoxythymidine (AZT) in the concentration range 0.032-31.6 mu M except for a single E. coli isolate and two Pseudomonas aeruginosa isolates which were resistant to the tested AZT concentrations. Purified recombinant S. enterica thymidine kinase phosphorylated AZT efficiently with a K-m of 73.3 mM and k(cat)/K-m of 6.6 x 10(4) s(-1)M(-1) and is the activator of this drug in vivo. 2 ',2 '-Difluoro-2 '-deoxycytidine ( gemcitabine) was a potent antibiotic against Gram-positive bacteria in the concentration range between 0.001 and 1.0 mu M. The B. cereus deoxyadenosine kinase had a Km for gemcitabine of 33.5 mM and kcat/Km of 5.1 x 10(3) s(-1) M-1 and activates gemcitabine in vivo. S. enterica and B. cereus are now amongst the first bacteria with a completely characterized set of dNK enzymes. Conclusions: Bacterial dNKs efficiently activate nucleoside analogues in a species-specific manner. Therefore, nucleoside analogues have a potential to be employed as antibiotics in the fight against emerging multiresistant bacteria.

Publishing year

2007

Language

English

Pages

510-520

Publication/Series

Journal of Antimicrobial Chemotherapy

Volume

60

Issue

3

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Pharmacology and Toxicology

Keywords

  • thymidine kinase
  • antibacterial
  • multidrug-resistant
  • salvage

Status

Published

ISBN/ISSN/Other

  • ISSN: 1460-2091