The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Archaeal abundance across a pH gradient in an arable soil and its relationship with bacterial and fungal growth rates.

Author

Summary, in English

Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (qPCR based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0-8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0-4.7) the abundance of archaea did not seem to respond to pH. Above this pH range there was a sharp, almost 4-fold, decrease in archaeal abundance, reaching a minimum at pH 5.1-5.2. The low archaeal abundance of archaeal 16S rRNA gene copies at this pH then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The non-uniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions, and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria and fungi towards the lower and higher ends of the examined pH gradient.

Publishing year

2012

Language

English

Pages

5906-5911

Publication/Series

Applied and Environmental Microbiology

Volume

78

Issue

16

Document type

Journal article

Publisher

American Society for Microbiology

Topic

  • Biological Sciences

Status

Published

Project

  • The role of archaea in soil carbon and nitrogen turnover
  • Microbial carbon-use efficiency

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 0099-2240