The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection

Author

  • XY Zhang
  • Andreas Molisch
  • SY Kung

Summary, in English

We introduce a novel soft antenna selection approach for multiple antenna systems through a joint design of both RF (radio frequency) and baseband signal processing. When only a limited number of frequency converters are available, conventional antenna selection schemes show severe performance degradation in most fading channels. To alleviate those degradations, we propose to adopt a transformation of the signals in the RF domain that requires only simple, variable phase shifters and combiners to reduce the number of RF chains. The constrained optimum design of these shifters, adapting to the channel state, is given in analytical form, which requires no search or iterations. The resulting system shows a significant performance advantage for both correlated and uncorrelated channels. The technique works for both transmitter and receiver design, which leads to the joint transceiver antenna selection. When only a single information stream is transmitted through the channel, the new design can achieve the same SNR gain as the full-complexity system while requiring, at most, two RF chains. With multiple information streams transmitted, it is demonstrated by computer experiments that the capacity performance is close to optimum.

Publishing year

2005

Language

English

Pages

4091-4103

Publication/Series

IEEE Transactions on Signal Processing

Volume

53

Issue

11

Document type

Journal article

Publisher

IEEE - Institute of Electrical and Electronics Engineers Inc.

Topic

  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1053-587X