The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Carrier and field dynamics around nanoscale Schottky contacts investigated by ultrafast near-field optics

Author

Summary, in English

We present femtosecond-resolved optical near-field pump-probe measurements of spatiotemporal carrier dynamics around a single nanoscale tungsten (W) disk embedded in GaAs. In these samples, Schottky contacts are formed at the W/GaAs interface. The experimental results are modeled by a selfconsistent treatment of the drift-diffusion equation for the carriers and Poisson's equation for the built-in electric field. At lower optically excited carrier densities, we observe that the built-in field suppresses electron transport towards and trapping into the metal particles. In this regime, an accumulation of carriers is seen at the edge of the depletion region of the Schottky contacts. The calculation reveals that the formation of a self-induced dynamic potential well is the origin of this result. In the high-density regime, efficient carrier transport towards and trapping into the W nanoparticle take place, resulting from the screening of the built-in field. These results allow us to describe measurements of the carrier dynamics in annealed low-temperature grown GaAs and demonstrate that the coupling of the carrier and field dynamics can substantially affect carrier trapping in metal-semiconductor composite materials.

Publishing year

2002

Language

English

Publication/Series

Physical Review B (Condensed Matter and Materials Physics)

Volume

65

Issue

4

Document type

Journal article

Publisher

American Physical Society

Topic

  • Condensed Matter Physics
  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1098-0121