The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between Eemian and Holocene

Author

  • Guy Schurgers
  • Uwe Mikolajewicz
  • Matthias Gröger
  • Ernst Maier-Reimer
  • Miren Vizcaíno
  • Arne Winguth

Summary, in English

A complex earth system model (atmosphere and ocean general circulation models, ocean biogeochemistry and terrestrial biosphere) was used to perform transient simulations of two interglacial sections (Eemian, 128-113 ky B. P., and Holocene, 9 ky B.P.-present). The changes in terrestrial carbon storage during these interglacials were studied with respect to changes in the earth's orbit. The effects of different climate factors on changes in carbon storage were studied in offline experiments in which the vegetation model was forced only with temperature, hydrological parameters, radiation, or CO2 concentration from the transient runs. The largest anomalies in terrestrial carbon storage were caused by temperature changes. However, the increase in storage due to forest expansion and increased photosynthesis in the high latitudes was nearly balanced by the decrease due to increased respiration. Large positive effects on carbon storage were caused by an enhanced monsoon circulation in the subtropics between 128 and 121 ky B. P. and between 9 and 6 ky B. P., and by increases in incoming radiation during summer for 45 degrees to 70 degrees N compared to a control simulation with present-day insolation. Compared to this control simulation, the net effect of these changes was a positive carbon storage anomaly in the terrestrial biosphere of about 200 Pg C for 125 ky B. P. and 7 ky B. P., and a negative anomaly around 150 Pg C for 116 ky B. P. Although the net increases for Eemian and Holocene were rather similar, the magnitudes of the processes causing these effects were different. The decrease in terrestrial carbon storage during the experiments was the main driver of an increase in atmospheric CO2 concentration during both the Eemian and the Holocene.

Publishing year

2006

Language

English

Pages

205-220

Publication/Series

Climate of the Past

Volume

2

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1814-9332