The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Improving densely deployed wireless network performance in unlicensed spectrum through hidden-node aware channel assignment

Author

Summary, in English

It is well known that a wireless local area network (WLAN) based on the IEEE 802.11 standard suffers from interference and scalability problems due to the limited number of non-overlapping channels. In order to mitigate the interference problem, channel assignment algorithms has been a popular research topic in recent years. It has been shown that such algorithms can greatly reduce the interference among wireless access points. However, in this paper, we show that previously proposed channel assignment algorithms may lead to an increased number of hidden nodes in dense network deployments. We also show that this can significantly decrease the performance of the network. Furthermore, we present results from experiments showing that the Request to send (RTS)/Clear to send (CTS) mechanism is unable to solve the hidden node problem in infrastructure WLANs, and therefore careful consideration needs to be taken when choosing channel assignment strategies in densely deployed wireless networks. To this end, we propose both a centralized channel assignment algorithm and a distributed channel assignment algorithm. Using a simulation study, we show that the proposed algorithms can outperform traditional channel assignment in densely deployed scenarios, in terms of QoS sensitive VoIP support without compromising the aggregate throughput, and that they are therefore a better performing alternative in such settings.

Publishing year

2011

Language

English

Pages

825-840

Publication/Series

Performance Evaluation

Volume

68

Issue

9

Document type

Journal article

Publisher

Elsevier

Topic

  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 0166-5316