The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Picosecond time-resolved x-ray refectivity of a laser-heated amorphous carbon film

Author

Summary, in English

We demonstrate thin film x-ray reflectivity measurements with picosecond time resolution. Amorphous carbon films with a thickness of 46 nm were excited with laser pulses characterized by 100 fs duration, a wavelength of 800 nm, and a fluence of 70 mJ/cm(2). The laser-induced stress caused a rapid expansion of the thin film followed by a relaxation of the film thickness as heat diffused into the silicon substrate. We were able to measure changes in film thickness as small as 0.2 nm. The relaxation dynamics are consistent with a model which accounts for carrier-enhanced substrate heat diffusivity. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562967]

Department/s

Publishing year

2011

Language

English

Publication/Series

Applied Physics Letters

Volume

98

Issue

10

Document type

Journal article

Publisher

American Institute of Physics (AIP)

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0003-6951