The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Irrigation of landfill leachates in energy forests - A technique to recover nutrients from municipal solid wastes

Author

Summary, in English

From an ecological point of view it is important to close nutrient cycles by recirculating mineral nutrients from the urban society back to agriculture and forestry, and thereby obtaining a sustainable resource utilisation. A part of this cycle is illustrated by irrigation of bioreactor landfill leachates on short rotation forests. This paper presents a budget for nutrients and heavy metals, beginning with the leachates and ending with the harvested tree fraction. The hypotheses were: The applied minerals deliver nutrients to the trees. The nutrient content in the accumulating biomass corresponds to the amount of mineral nutrients applied. The concentrations of heavy metals in the trees will remain low. The uptake of elements in birch was for P 35%, Ca 1.2%, Cd 64%, Cu 10%, Mn 19%, Ni 0.11%, and for Zn 26% of the supplied amounts. It was concluded that nutrients, with some exceptions, are supplied in sufficient amounts from the irrigated leachates to achieve optimal biomass growth, that the amounts of ions immobilised by the plants were significantly lower compared to the applied amounts, and that the concentrations of heavy metals are not increasing in the trees after irrigation. The overall conclusion is that a leachate irrigation system is efficient if the available vegetated land area is large enough for effective nutrient uptake, but the nutrient ratio may need to be balanced to meet the needs of the plants.

Publishing year

2004

Language

English

Pages

213-224

Publication/Series

Water, Air and Soil Pollution

Volume

154

Issue

1-4

Document type

Journal article

Publisher

Springer

Topic

  • Social Sciences Interdisciplinary

Keywords

  • leachate
  • nutrient
  • landfill
  • irrigation
  • heavy metal
  • Betula
  • birch

Status

Published

ISBN/ISSN/Other

  • ISSN: 1573-2932