The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

delta-Aminolevulinic acid dehydratase genotype predicts toxic effects of lead on workers' peripheral nervous system

Author

  • Guang Zheng
  • Liting Tian
  • Yihuai Liang
  • Karin Broberg Palmgren
  • Lijian Lei
  • Weijun Guo
  • Johan Nilsson
  • Ingvar A. Bergdahl
  • Staffan Skerfving
  • Taiyi Jin

Summary, in English

There is a wide variation in sensitivity to lead (Pb) exposure, which may be due to genetic susceptibility towards Pb. We investigated whether a polymorphism (rs1800435) in the delta-aminolevulinic acid dehydratase (ALAD) gene affected the toxicokinetics and toxicodynamics of Pb. Among 461 Chinese Pb-exposed storage battery and 175 unexposed workers, allele frequencies for the ALAD1 and ALAD2 alleles were 0.968 and 0.032, respectively. The Pb-exposed workers had a higher fraction of the ALAD1-2/2-2 genotype than unexposed workers (7.8% vs. 2.3%, p = 0.01). The Pb levels in blood (B-Pb) and urine (U-Pb) were higher in Pb-exposed workers carrying the AIAD2 allele compared to homozygotes for ALAD1 (median B-Pb: 606 vs. 499 mu g/L; U-Pb: 233 vs. 164 mu g/g creatinine), while there was no statistically significant difference in the unexposed controls (median: 24 vs. 37 mu g/L, and 3.9 vs. 6.4 mu g/g creatinine, respectively). High B-Pb and U-Pb were associated with statistically significantly lower sensory and motor conduction velocities in the median, ulnar and peroneal nerves. At the same B-Pb and U-Pb,ALAD1 homozygotes had lower conduction velocities than the ALAD2 carriers. There were similar trends for toxic effects on haem synthesis (zinc protoporphyrin and haemoglobin in blood) and renal function (albumin and N-acetyl-D-beta-acetylglucosaminidase in urine), but without statistical significance. There was no difference in Pb toxicokinetics and toxicodynamics associated with VDR BsmI polymorphism. Our results show that the ALAD genotype modifies the relationship between Pb and its toxic effects on the peripheral nervous system. This must be considered in the assessment of risks at Pb exposure. (C) 2011 Elsevier Inc. All rights reserved.

Publishing year

2011

Language

English

Pages

374-382

Publication/Series

NeuroToxicology

Volume

32

Issue

4

Document type

Journal article

Publisher

Elsevier

Topic

  • Environmental Health and Occupational Health

Keywords

  • Lead
  • ALAD
  • Gene-environment interaction
  • Peripheral nervous system
  • Haem synthesis
  • Kidney

Status

Published

ISBN/ISSN/Other

  • ISSN: 1872-9711