The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Apoptosis induced by the potential chemotherapeutic drug N1, N11-Diethylnorspermine in a neuroblastoma cell line.

Author

Summary, in English

Neuroblastoma is a highly malignant neoplasm found in young children. Although children with high-risk neuroblastoma respond to chemotherapy, relapses are common. On account of poor treatment outcome, new treatment strategies are constantly sought for neuroblastoma. Polyamine analogues are potentially novel substances for treatment of neuroblastoma. In this study, we have treated two neuroblastoma cell lines, SH-SY5Y and LA-N-1, with the spermine analogue N, N-Diethylnorspermine (DENSPM). SH-SY5Y was the most sensitive cell line, in which DENSPM treatment resulted in an inhibition of cell proliferation and an induction of cell death. The cell death induced by DENSPM treatment was apoptotic, as evidenced by cleavage of procaspase 3 and induction of caspase-3 activity. In contrast, DENSPM treatment only resulted in a slight inhibition of cell proliferation in LA-N-1 cells. There were several possible causes for the lower sensitivity to DENSPM treatment in the latter cell line when compared with SH-SY5Y cells. DENSPM-induced polyamine depletion was more extensive in SH-SY5Y cells than in LA-N-1 cells. This was partly because of a higher induction of the polyamine catabolic enzyme spermidine/spermine N-acetyltransferase in the cell line SH-SY5Y. The DENSPM-induced polyamine depletion was also caused by the inhibition of ornithine decarboxylase. LA-N-1 cells contained a higher level of the prosurvival protein survivin, which was further increased after DENSPM treatment. In contrast, DENSPM treatment resulted in a decreased survivin level in SH-SY5Y cells.

Publishing year

2010

Language

English

Pages

917-926

Publication/Series

Anti-Cancer Drugs

Volume

21

Issue

10

Document type

Journal article

Publisher

Rapid Communications

Topic

  • Neurosciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0959-4973