The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

How swifts control their glide performance with morphing wings

Author

Summary, in English

Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which extrapolated the wing's performance envelope from aerodynamic theory. Here we describe the aerodynamic and structural performance of actual swift wings, as measured in a wind tunnel, and on this basis build a semiempirical glide model. By measuring inside and outside swifts' behavioural envelope, we show that choosing the most suitable sweep can halve sink speed or triple turning rate. Extended wings are superior for slow glides and turns; swept wings are superior for fast glides and turns. This superiority is due to better aerodynamic performance - with the exception of fast turns. Swept wings are less effective at generating lift while turning at high speeds, but can bear the extreme loads. Finally, our glide model predicts that cost-effective gliding occurs at speeds of 8 - 10 m s(-1), whereas agility-related figures of merit peak at 15 - 25 m s(-1). In fact, swifts spend the night ('roost') in flight at 8 - 10 m s(-1) ( ref. 11), thus our model can explain this choice for a resting behaviour(11,12). Morphing not only adjusts birds' wing performance to the task at hand, but could also control the flight of future aircraft(7).

Publishing year

2007

Language

English

Pages

1082-1085

Publication/Series

Nature

Volume

446

Issue

7139

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Biological Sciences

Status

Published

Research group

  • Animal Flight Lab

ISBN/ISSN/Other

  • ISSN: 0028-0836