The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception?

Author

Summary, in English

In terrestrial organisms, sensitivity to the Earth's magnetic field is mediated by at least two different magnetoreception mechanisms, one involving biogenic ferromagnetic crystals (magnetite/maghemite) and the second involving a photo-induced biochemical reaction that forms long-lasting, spin-coordinated, radical pair intermediates. In some vertebrate groups (amphibians and birds), both mechanisms are present; a light-dependent mechanism provides a directional sense or 'compass', and a non-light-dependent mechanism underlies a geographical-position sense or 'map'. Evidence that both magnetite-and radical pair-based mechanisms are present in the same organisms raises a number of interesting questions. Why has natural selection produced magnetic sensors utilizing two distinct biophysical mechanisms? And, in particular, why has natural selection produced a compass mechanism based on a light-dependent radical pair mechanism (RPM) when a magnetite-based receptor is well suited to perform this function? Answers to these questions depend, to a large degree, on how the properties of the RPM, viewed from a neuroethological rather than a biophysical perspective, differ from those of a magnetite-based magnetic compass. The RPM is expected to produce a light-dependent, 3-D pattern of response that is axially symmetrical and, in some groups of animals, may be perceived as a pattern of light intensity and/or color superimposed on the visual surroundings. We suggest that the light-dependent magnetic compass may serve not only as a source of directional information but also provide a spherical coordinate system that helps to interface metrics of distance, direction and spatial position.

Publishing year

2010

Language

English

Pages

3247-3255

Publication/Series

Journal of Experimental Biology

Volume

213

Issue

19

Document type

Journal article (letter)

Publisher

The Company of Biologists Ltd

Topic

  • Zoology

Keywords

  • place cells
  • subicular
  • spatial cognition
  • magnetic compass
  • radical pair mechanism

Status

Published

Research group

  • Lund Vision Group

ISBN/ISSN/Other

  • ISSN: 1477-9145