The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The active-site cysteinyls and hydrophobic cavity residues of resA are important for cytochrome c maturation in Bacillus subtilis

Author

Summary, in English

ResA is an extracytoplasmic membrane-bound thiol-disulfide oxidoreductase required for cytochrome c maturation in Bacillus subtilis. Previous biochemical and structural studies have revealed that the active-site cysteinyls cycle between oxidized and reduced states with a low reduction potential and that, upon reduction, a hydrophobic cavity forms close to the active site. Here we report in vivo studies of ResA-deficient B. subtilis complemented with a series of ResA variants. Using a range of methods to analyze the cellular cytochrome c content, we demonstrated (i) that the N-terminal transmembrane segment of ResA serves principally to anchor the protein to the cytoplasmic membrane but also plays a role in mediating the activity of the protein; (ii) that the active-site cysteines are important for cytochrome c maturation activity; (iii) that Pro141, which forms part of the hydrophobic cavity and which adopts a cis conformation, plays an important role in protein stability; (iv) that Glu80, which lies at the base of the hydrophobic cavity, is important for cytochrome c maturation activity; and, finally, (v) that Pro141 and Glu80 ResA mutant variants promote selective maturation of low levels of one c-type cytochrome, subunit II of the cytochrome c oxidase caa(3), indicating that this apocytochrome is distinct from the other three endogenous c-type cytochromes of B. subtilis.

Publishing year

2008

Language

English

Pages

4697-4705

Publication/Series

Journal of Bacteriology

Volume

190

Issue

13

Document type

Journal article

Publisher

American Society for Microbiology

Topic

  • Microbiology

Status

Published

ISBN/ISSN/Other

  • ISSN: 0021-9193