The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Modification of Charge Transfer and Energy Level Alignment at Organic/TiO2 Interfaces

Author

  • Shun Yu
  • Sarch Ahmadi
  • Pål Palmgren
  • Franz Hennies
  • Marcelo Zuleta
  • Mats Gothelid

Summary, in English

Adsorption of titanyl phthalocyanine (TiOPc) on rutile TiO2(110) modified by a set of pyridine derivatives (2,2'-bipyridine, 4,4'-bipyridine, and 4-tert-butyl pyridine) has been investigated using synchrotron radiation based X-ray photoelectron spectroscopy (XPS). For the unmodified TiOPc/TiO2 system, a strong charge transfer is observed from the first layer TiOPc into the substrate, which leads to a molecular layer at the interface with a depleted highest occupied molecular orbital (HOMO). However, precovering the TiO2 surface with a saturated pyridine monolayer effectively reduce this process and leave the TiOPc in a less perturbed molecular state. Furthermore, the TiOPc HOMO and core levels are observed at different binding energies ranging by 0.3 eV on the three pyridine monolayers, which is ascribed to differences in surface potentials set up by the different pyridine/TiO2 systems.

Department/s

Publishing year

2009

Language

English

Pages

13765-13771

Publication/Series

Journal of Physical Chemistry C

Volume

113

Issue

31

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Natural Sciences
  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447