The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Bilateral symmetric organization of neural elements in the visual system of a coelenterate, Tripedalia cystophora (Cubozoa)

Author

Summary, in English

Cubozoans differ from other cnidarians by their body architecture and nervous system structure. In the medusa stage they possess the most advanced visual system within the phylum, located in sophisticated sensory structures, rhopalia. The rhopalium is a club-shaped structure with paired pit-shaped pigment cup eyes, paired slit-shaped pigment cup eyes, and two complex camera-type eyes: one small upper lens eye and one large lower lens eye. The medusa carries four rhopalia and visual processing and locomotor rhythm generation takes place in the rhopalia. We show here a bilaterally symmetric organization of neurons, with commissures connecting the two sides, in the rhopalium of the cubozoan Tripedalia cystophora. The fortuitous observation that a subset of neurons is strongly immunoreactive for a PCNA (proliferating cell nuclear antigen)-like epitope allowed us to analyze the organization of these neurons in detail. Distinct PCNA-immunoreactive (PCNA-ir) nuclei form six bilateral pairs that are associated with the slit eyes, pit eyes, upper lens eye, and the posterior wall of the rhopalium. Three commissures connect the clusters of the two sides and all clusters in the rhopalium have connections to the area around the base of the stalk. This neuronal system provides an anatomical substrate for integration of visual signals from the different eyes.

Publishing year

2005

Language

English

Pages

251-262

Publication/Series

Journal of Comparative Neurology

Volume

492

Issue

3

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Neurology

Keywords

  • eyes
  • nervous system
  • photoreceptors
  • cnidaria

Status

Published

Research group

  • Lund Vision Group

ISBN/ISSN/Other

  • ISSN: 1096-9861