The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Reactivity of LiBH4: In situ synchrotron radiation powder X-ray diffraction study

Author

  • Lene Mosegaard
  • Bitten Moller
  • Jens-Erik Jorgensen
  • Yaroslav Filinchuk
  • Yngve Cerenius
  • Jonathan C Hanson
  • Elaine Dimasi
  • Flemming Besenbacher
  • Torben R Jensen

Summary, in English

Lithium tetrahydridoboranate (LiBH4) may be a potentially interesting material for hydrogen storage, but in order to absorb and desorb hydrogen routinely and reversibly, the kinetics and thermodynamics need to be improved significantly. A priori, this material has one of the highest theoretical gravimetric hydrogen contents, 18.5 wt%, but unfortunately for practical applications, hydrogen release occurs at too high temperature in a non-reversible way. By means of in situ synchrotron radiation powder X-ray diffraction (SR-PXD), the interaction between LiBH4 and different additives-SiO2, TiCl3, LiCl, and Au - is investigated. It is found that silicon dioxide reacts with molten LiBH4 and forms Li2SiO3 or Li4SiO4 at relatively low amounts of SiO2, e.g., with 5.0 and 9.9 mol % SiO2 in LiBH4, Whereas, for higher amounts of SiO2 (e.g., 25.5 mol %), only the Li2SiO3 phase is observed. Furthermore, we demonstrate that a solid-state reaction occurs between LiBH4 and TiCl3 to form LiCl at room temperature. At elevated temperatures, more LiCl is formed simultaneously with a decrease in the diffracted intensity from TiCl3. Lithium chloride shows some solubility in solid LiBH4 at T > 100 degrees C. This is the first report of substituents that accommodate the structure of LiBH4 by a solid/solid dissolution reaction. Gold is found to react with molten LiBH4 forming a Li-Au alloy with CuAu3-type structure. These studies demonstrate that molten LiBH4 has a high reactivity, and finding a catalyst for this H-rich system may be a challenge.

Department/s

Publishing year

2008

Language

English

Pages

1299-1303

Publication/Series

Journal of Physical Chemistry C

Volume

112

Issue

4

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Sciences
  • Natural Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447