The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Growth of ectomycorrhizal fungi in drained peatland forests with variable P and K availability

Author

Summary, in English

The aim of this study was to investigate how the biomass of extramatrical mycorrhizal mycelia (EMM) is influenced by the addition of different phosphorus (P), potassium (K) and PK fertilizers in peatland forests with variable P and K availability. Four fertilizers were used: apatite, biotite, Rauta-PK (TM) (apatite and ferrosulphate) and a test fertilizer (50% apatite and 50% recycled iron phosphate). Forest plots with four different types of nutrient balance (deficient P and deficient K, deficient P and sufficient K, sufficient P and deficient K, and sufficient P and sufficient K) were studied. The effects on EMM biomass and ectomycorrhizal (EM) biomass in roots were estimated by ergosterol and phospholipid fatty acid (PLFA) analysis using in-growth mesh bags. Nutrients and rare-earth elements in EM roots surrounding the mesh bags were quantified and used as indicators of nutrient transport by the EMM in the mesh bags. The biomass of EMM was enhanced by P, K and PK deficiency of the trees, and EM fungal biomass in the roots was increased by P deficiency. The test fertilizer enhanced EMM biomass in all the plots studied, whereas the other fertilizers did not have any significant effect. No significant interactions between the P and K availability of host and mycelial fertilizer response could be detected. Deficiency of P or K or both in needles did not affect the concentrations of rare-earth elements in the tree roots. Earlier results from laboratory experiments have shown reduced carbon allocation to EM fungi under K deficiency, but this was not the case in these mature forests. Instead, we observed increased EMM biomass in response to both P and K deficiency.

Publishing year

2009

Language

English

Pages

139-150

Publication/Series

Plant and Soil

Volume

316

Issue

1-2

Document type

Journal article

Publisher

Springer

Topic

  • Biological Sciences

Keywords

  • deficiency
  • P
  • K deficiency
  • Ergosterol
  • Extramatrical mycorrhizal mycelia
  • Phospholipid fatty acids (PLFA)
  • Peatland

Status

Published

Project

  • Ectomycorrhizal fungi and apatite weathering

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 0032-079X