The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil

Author

Summary, in English

Pollution-induced community tolerance (PICT) of soil bacteria to the antibiotic tylosin was studied over 95 days. Tylosin was added at increasing concentrations, together with different amounts of alfalfa to study the effects of substrate addition on PICT and bacterial growth in soil. The leucine incorporation technique was used to estimate bacterial growth and as a detection method in the PICT concept. Direct inhibition of the bacterial growth rates, resulting in a dose-response curve, was found above 50 mg of tylosin kg(-1) of soil two days after tylosin addition (IC50 value of 960 mg tylosin kg(-1)). After 10 days of exposure to at least 50 mg of tylosin kg(-1), the PICT was observed and correlated to inhibition of bacterial growth by tylosin. A return of the PICT to control levels was found over time, and after 95 days at 1500 mg of tylosin kg(-1), essentially no PICT was found, as compared to the unpolluted control soil. The return of PICT to pre-exposure levels was not totally reflected in the recovery of bacterial growth. Alfalfa addition did not affect the inhibitory effect of tylosin on bacterial growth rates; neither did it alter the PICT. Since tylosin is relatively rapidly degraded in soil, our results indicate that the PICT will return to prepollution levels when the selective pressure of the toxicant is removed and will thus be a useful technique for monitoring remediation measures.

Publishing year

2008

Language

English

Pages

6917-6921

Publication/Series

Environmental Science & Technology

Volume

42

Issue

18

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Biological Sciences

Status

Published

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 1520-5851