The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Strain effects on individual quantum dots: Dependence of cap layer thickness

Author

Summary, in English

We have studied the effects of strain on individual self-assembled quantum dots (QDs) exemplified by InP dots embedded in GaInP. The quantum dot sample was etched from the top and in this way the amount of capping material was reduced. In a sequence of etch cycles, the cap layer was thinned, and the photoluminescence from several individual QDs could be followed as a function of cap layer thickness. The evolution of the emission spectra clearly depended on the quantum dot size. We interpret this as arising from differences in the aspect ratio for quantum dots of different sizes. The influence of the capping layer, for different QD geometries, was modeled using deformation potential theory with the strain calculated using a full three-dimensional linear elasticity model. The results agree well with the experimental observations.

Publishing year

2005

Language

English

Publication/Series

Physical Review B (Condensed Matter and Materials Physics)

Volume

72

Issue

8

Document type

Journal article

Publisher

American Physical Society

Topic

  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1098-0121