The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Density cycles and an offspring quantity and quality game driven by natural selection

Author

Summary, in English

A long-standing hypothesis posits that natural selection can favour two female strategies when density cycles. At low density, females producing many smaller progeny are favoured when the intrinsic rate of increase, r, governs population growth. At peak density, females producing fewer, high-quality, progeny are favoured when the carrying capacity, K, is exceeded and the population crashes. Here we report on the first example of a genetic r versus K selection game that promotes stable population cycles in lizards. Decade-long fitness studies and game theory demonstrated that two throat-colour morphs were refined by selection in which the strength of natural selection varied with density. Orange-throated females, r strategists, produced many eggs and were favoured at low density. Conversely, yellow-throated females, K strategists, produced large eggs and were favoured at high density. Progeny size should also be under negative frequency-dependent selection in that large progeny will have a survival advantage when rare, but the advantage disappears when they become common. We confirmed this prediction by seeding field plots with rare and common giant hatchlings. Thus, intrinsic causes of frequency- and density-dependent selection promotes an evolutionary game with two-generation oscillations.

Publishing year

2000

Language

English

Pages

985-988

Publication/Series

Nature

Volume

406

Issue

6799

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Biological Sciences

Status

Published

Research group

  • Evolution and Ecology of Phenotypes in Nature

ISBN/ISSN/Other

  • ISSN: 0028-0836