The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The inverse scattering problem for a homogeneous bi-isotropic slab using transient data

Author

Editor

  • L. Päivärinta
  • E. Somersalo

Summary, in English

Transient wave propagation in a finite bi-isotropic slab is treated. The incident

field impinges normally on the slab, which can be inhomogeneous wrt

depth. Dispersion and bi-isotropy are modeled by time convolutions in the

constitutive relations. Outside the slab the medium is assumed to be homogeneous,

non-dispersive and isotropic, and such that there is no phase velocity

mismatch at the boundaries of the slab. Two alternative methods of solution

to the propagation problem are given—the imbedding method and the Green

function approach. The second method is used to solve the inverse problem

and the first to generate synthetic data. The inverse scattering problem is to

reconstruct the four susceptibility kernels of the medium using a set of finite

time trace of reflection and transmission data.

Publishing year

1993

Language

English

Pages

112-125

Publication/Series

Inverse problems in mathematical physics / Lecture notes in physics

Volume

422

Document type

Book chapter

Publisher

Springer

Topic

  • Other Electrical Engineering, Electronic Engineering, Information Engineering
  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

Research group

  • Electromagnetic theory

ISBN/ISSN/Other

  • ISSN: 0075-8450
  • ISBN: 3-540-57195-7