The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Determination of primary sequence specificity of Arabidopsis MAPKs MPK3 and MPK6 leads to identification of new substrates

Author

  • Carolin Sörensson
  • Marit Lenman
  • Jenny Veide-Vilg
  • Simone Schopper
  • Thomas Ljungdahl
  • Morten Grotli
  • Markus J. Tamas
  • Scott C. Peck
  • Erik Andreasson

Summary, in English

MAPKs (mitogen-activated protein kinases) are signalling components highly conserved among eukaryotes. Their diverse biological functions include cellular differentiation and responses to different extracellular stress stimuli. Although some substrates of MAPKs have been identified in plants, no information is available about whether amino acids in the primary sequence other than proline-directed phosphorylation (pS-P) contribute to kinase specificity towards substrates. in the present study, we used a random positional peptide library to search for consensus phosphorylation sequences for Arabidopsis MAPKs MPK3 and MPK6. These experiments indicated a preference towards the sequence L/P-P/X-S-P-R/K for both kinases. After bioinformatic processing, a number of novel candidate MAPK substrates were predicted and subsequently confirmed by in vitro kinase assays using bacterially expressed native Arabidopsis proteins as substrates. MPK3 and MPK6 phosphorylated all proteins tested more efficiently than did another MAPK, MPK4. These results indicate that the amino acid residues in the primary sequence surrounding the phosphorylation site of Arabidopsis MAPK substrates can contribute to MAPK specificity. Further characterization of one of these new substrates confirmed that AtIg80180.1 was phosphorylated in planta in a MAPK-dependent manner. Phenotypic analyses of Arabidopsis expressing phosphorylation site mutant forms of AtIg80180.1 showed clustered stomata and higher stomatal index in cotyledons expressing the phosphomimetic form of AtIg80180.1, providing a link between this new MAPK substrate and the defined role for MPK3 and MPK6 in stomatal patterning.

Publishing year

2012

Language

English

Pages

271-278

Publication/Series

Biochemical Journal

Volume

446

Document type

Journal article

Publisher

Portland Press

Topic

  • Biochemistry and Molecular Biology

Keywords

  • Arabidopsis
  • AtIg13390.1
  • AtIg80180.1
  • At2g14850.1
  • At3g16770.1
  • mitogen-activated protein kinase substrate (MAPK substrate)
  • random
  • positional scanning synthetic combinatorial peptide library
  • stoma

Status

Published

ISBN/ISSN/Other

  • ISSN: 0264-6021