The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Heritability of resting metabolic rate in a wild population of blue tits.

Author

Summary, in English

We report the first study with the aim to estimate heritability in a wild population, a nest box breeding population of blue tits. We estimated heritability as well as genetic and phenotypic correlations of resting metabolic rate (RMR), body mass and tarsus length with an animal model based on data from a split cross-fostering experiment with brood size manipulations. RMR and body mass, but not tarsus length, showed significant levels of explained variation but for different underlying reasons. In body mass, the contribution to the explained variation is mainly because of a strong brood effect, while in RMR it is mainly because of a high heritability. The additive variance in RMR was significant and the heritability was estimated to 0.59. The estimates of heritability of body mass (0.08) and tarsus length (0.00) were both low and based on nonsignificant additive variances. Thus, given the low heritability (and additive variances) in body mass and tarsus length the potential for direct selection on RMR independent of the two traits is high in this population. However, the strong phenotypic correlation between RMR and mass (0.643 +/- 0.079) was partly accounted for by a potentially strong, although highly uncertain, genetic correlation (1.178 +/- 0.456) between the two traits. This indicates that the additive variance of body mass, although low, might still somewhat constrain the independent evolvability of RMR.

Publishing year

2009

Language

English

Pages

1867-1874

Publication/Series

Journal of evolutionary biology

Volume

22

Issue

9

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Biological Sciences

Status

Published

Research group

  • Life History and Functional Ecology

ISBN/ISSN/Other

  • ISSN: 1420-9101