The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Semi-selective fatty acyl reductases from four Heliothine moths influence the specific pheromone composition

Author

Summary, in English

Background: Sex pheromones are essential in moth mate communication. Information on pheromone biosynthetic genes

and enzymes is needed to comprehend the mechanisms that contribute to specificity of pheromone signals. Most

heliothine moths use sex pheromones with (Z)–11–hexadecenal as the major component in combination with minor fatty

aldehydes and alcohols. In this study we focus on four closely related species, Heliothis virescens, Heliothis subflexa,

Helicoverpa armigera and Helicoverpa assulta, which use (Z)–11–hexadecenal, (Z)–9–tetradecanal, and (Z)–9–hexadecenal in

different ratios in their pheromone blend. The components are produced from saturated fatty acid precursors by

desaturation, b–oxidation, reduction and oxidation.

Results: We analyzed the composition of fatty acyl pheromone precursors and correlated it to the pheromone composition.

Next, we investigated whether the downstream fatty–acyl reduction step modulates the ratio of alcohol intermediates

before the final oxidation step. By isolating and functionally characterizing the Fatty Acyl Reductase (pgFAR) from each

species we found that the pgFARs were active on a broad set of C8 to C16 fatty acyl substrates including the key

pheromone precursors, Z9–14, Z9–16 and Z11–16:acyls. When presenting the three precursors in equal ratios to yeast

cultures expressing any of the four pgFARs, all reduced (Z)–9–tetradecenoate preferentially over (Z)–11–hexadecenoate, and

the latter over (Z)–9–hexadecenoate. Finally, when manipulating the precursor ratios in vitro, we found that the pgFARs

display small differences in the biochemical activity on various substrates.

Conclusions: We conclude that a pgFAR with broad specificity is involved in heliothine moth pheromone biosynthesis,

functioning as a semi–selective funnel that produces species–specific alcohol product ratios depending on the fatty–acyl

precursor ratio in the pheromone gland. This study further supports the key role of these in pheromone biosynthesis and

emphasizes the interplay between the pheromone fatty acyl precursors and the Lepidoptera specific pgFARs in shaping the

pheromone composition.

Publishing year

2012

Language

English

Pages

1-11

Publication/Series

PLoS ONE

Volume

7

Issue

e37230

Document type

Journal article

Publisher

Public Library of Science (PLoS)

Topic

  • Biological Sciences
  • Zoology

Status

Published

Project

  • Evolutionary mechanisms of pheromone divergence in Lepidoptera

Research group

  • Pheromone Group

ISBN/ISSN/Other

  • ISSN: 1932-6203