The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Soil microbial recolonisation after a fire in a Mediterranean forest

Author

  • Gema Barcenas-Moreno
  • Fuensanta Garcia-Orenes
  • Jorge Mataix-Solera
  • Jorge Mataix-Beneyto
  • Erland Bååth

Summary, in English

The capacity of different microbial groups to recolonise soil after a fire event will be decisive in determining the microbial community after the fire. Microbial recovery after a wildfire that occurred in Sierra la Grana (Alicante province, southeast Spain) was tracked for 32 months after the fire. Colony forming units (CFUs) of different microbial groups, microbial biomass, soil respiration, bacterial growth (leucine incorporation) and changes in the microbial community structure (phospholipid fatty acid (PLFA) analysis) were determined directly after the fire and four times during the recovery period. Direct effects were reflected by low values of most microbiological variables measured immediately after the fire. Microbial biomass increased during the first year after the fire but was below the unburned reference site 32 months after the fire. Bacterial activity and soil respiration showed the highest values immediately after the fire, but decreased to values similar to that of the unburned reference site or even lower (respiration) 32 months after the fire. Colony forming units of bacterial groups estimated by the plate count method peaked 8 months after the fire, but then decreased, showing values similar to the unburned reference site at the end of the study, with the exception of spore formers, which were 20 times higher than the reference site 32 months after the fire. Fungal CFUs were more sensitive to the fire and recovered more slowly than bacteria. Fungi recovering less rapidly than bacteria were also indicated by the PLFA pattern, with PLFAs indicative of fungi being less common after the fire. The recovery of microbial biomass and activity was mirrored by the initially very high levels of dissolved organic carbon being consumed and decreasing within 8 months after the fire. The wildfire event had thus resulted in a decrease in microbial biomass, with a more bacteria-dominated microbial community.

Publishing year

2011

Language

English

Pages

261-272

Publication/Series

Biology and Fertility of Soils

Volume

47

Issue

3

Document type

Journal article

Publisher

Springer

Topic

  • Biological Sciences

Keywords

  • Forest fire
  • Soil
  • Microbial community
  • Microbial recolonisation
  • Fungi
  • Bacteria
  • Actinomycetes
  • Spore formers

Status

Published

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 0178-2762