The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Use of (18)O water and ESI-MS detection in subsite characterisation and investigation of the hydrolytic action of an endoglucanase.

Author

Summary, in English

We present a novel method for investigating subsite-substrate interactions of glycoside hydrolases and the determination of the oligosaccharide cleavage point based on the analysis of the hydrolysis products produced in the presence of (18)O-labelled water. Conventional techniques for such determination of the hydrolysis pattern call for the chemical modification of the substrate, whereas the method presented makes it possible to use natural substrates, utilising the selectivity and sensitivity of mass spectrometry. This method is very useful for the detection and analysis of enzyme-catalysed hydrolysis, provided that the conditions are chosen where (18)O incorporation without the presence of the enzyme is absent or undetectable. Such conditions were found and used in incubations of cellopentaose with the well-characterised endoglucanase Cel5A from Bacillus agaradhaerens. We were able to confirm that the preferred glycoside bond to be hydrolysed is the third one counting from the non-reducing end of the cellopentaose. Thus, cellopentaose prefers to bind from the -3 to the +2 subsites, which is in accordance with published crystallographic data. The main advantage of the method presented is that there is no need for a priori chemical modification/labelling of oligosaccharide substrates, which are processes that can disturb the enzyme-substrate interaction. From (18)O incorporation we could demonstrate that the enzyme also has an oxygen-exchange activity on cellotriose and cellobiose. This is in agreement with the mechanism for transglycosylation and indicates that it is possible for the enzyme to perform such reactions.

Publishing year

2009

Language

English

Pages

1977-1984

Publication/Series

Analytical and Bioanalytical Chemistry

Volume

394

Issue

7

Document type

Journal article

Publisher

Springer

Topic

  • Analytical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1618-2642