The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

Author

Summary, in English

Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using the leucine incorporation technique, in order to predict future changes in temperature sensitivity of resident soil bacterial communities. Soil samples were collected along a climate gradient consisting of locations on the Antarctic Peninsula ( Anchorage Island, 67 degrees 34'S, 68 degrees 08'W), Signy Island (60 degrees 43'S, 45 degrees 38'W) and the Falkland Islands (51 degrees 76'S 59 degrees 03'W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell-field habitats. The bacterial communities were adapted to the mean annual temperature of their environment, as shown by a significant correlation between the mean annual soil temperature and the minimum temperature for bacterial growth (T-min). Every 1 degrees C rise in soil temperature was estimated to increase T-min by 0.24-0.38 degrees C. The optimum temperature for bacterial growth varied less and did not have as clear a relationship with soil temperature. Temperature sensitivity, indicated by Q(10) values, increased with mean annual soil temperature, suggesting that bacterial communities from colder regions were less temperature sensitive than those from the warmer regions. The OTC warming (generally <1 degrees C temperature increases) over 3 years had no effects on temperature relationship of the soil bacterial community. We estimate that the predicted temperature increase of 2.6 degrees C for the Antarctic Peninsula would increase T-min by 0.6-1 degrees C and Q(10) (0-10 degrees C) by 0.5 units.

Publishing year

2009

Language

English

Pages

2615-2625

Publication/Series

Global Change Biology

Volume

15

Issue

11

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Biological Sciences

Keywords

  • Q(10)
  • leucine incorporation
  • community adaptation
  • climate warming
  • Antarctic
  • bacterial growth
  • soil
  • temperature response

Status

Published

Project

  • Effect of environmental factors on fungal and bacterial growth in soil
  • Microbial carbon-use efficiency

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 1354-1013