The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of testosterone and corticosterone on immunocompetence in the zebra finch

Author

Summary, in English

The original immunocompetence handicap hypothesis (ICHH) suggested that testosterone has a handicapping effect in males by both promoting the development of sexual signals and suppressing immune function. A modified version, the stress-linked ICHH, has recently proposed that testosterone is immunosuppressive indirectly by increasing production of corticosterone. To test both the original and stress-mediated versions of the ICHH, we implanted male zebra finches taken from lines selected for divergent maximum stress-induced levels of corticosterone (high, low and control) with either empty or testosterone-filled implants. Their Immoral and cell-mediated immune responses were then assessed by challenge with diphtheria:tetanus vaccine and phytohemagglutinin respectively. We found no effect of the hormone manipulations on either PHA or tetanus antibody responses, but found a significant interaction between titers of both testosterone and corticosterone on diphtheria secondary antibody response; antibody response was greatest in individuals with high levels of both hormones. There was also a significant interactive effect between testosterone treatment group and corticosterone titer on body mass; the body mass of males in the elevated testosterone treatment group decreased with increasing corticosterone titer. These results suggest that, contrary to the assumption of the stress-mediated version of the ICHH, high plasma levels of corticosterone are not immunosuppressive, but are in fact immuno-enhancing in the presence of high levels of plasma testosterone. Equally, the central assumption of the ICHH that testosterone is obligately immunosuppressive is also not supported. The same individuals with the highest levels of both hormones and consequently the most robust antibody response also possessed the lowest body mass.

Publishing year

2007

Language

English

Pages

126-134

Publication/Series

Hormones and Behavior

Volume

51

Issue

1

Document type

Journal article

Publisher

Elsevier

Topic

  • Biological Sciences

Keywords

  • immunocompetence handicap hypothesis
  • immunocompetence
  • zebra finch
  • glucocorticoid
  • corticosterone
  • testosterone
  • PHA
  • diphtheria : tetanus
  • stress

Status

Published

Research group

  • Molecular Ecology and Evolution Lab

ISBN/ISSN/Other

  • ISSN: 1095-6867