The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil

Author

Summary, in English

Soil pH is one of the most influential variables in soil, and is a powerful factor in influencing the size, activity and community structure of the soil microbial community. It was previously shown in a century old artificial pH gradient in an arable soil (pH 4.0-8.3) that bacterial growth is positively related to pH, while fungal growth increases with decreasing pH. In an attempt to elucidate some of the mechanisms for this, plant material that especially promotes fungal growth (straw) or bacterial growth (alfalfa) was added to soil samples of the pH gradient in 5-day laboratory incubation experiments. Also, bacterial growth was specifically inhibited by applying a selective bacterial growth inhibitor (bronopol) along the entire pH gradient to investigate if competitive interaction caused the shift in the decomposer community along the gradient. Straw benefited fungal growth relatively more than bacterial, and vice versa for alfalfa. The general pattern of a shift in fungal:bacterial growth with pH was, however, unaffected by substrate additions, indicating that lack of a suitable substrate was not the cause of the pH effect on the microbial community. In response to the bacterial growth inhibition by bronopol, there was stimulation of fungal growth up to pH 7, but not beyond, both for alfalfa and straw addition. However, the accumulation of ergosterol (an indicator of fungal biomass) during the incubation period after adding alfalfa increased at all pHs, indicating that fungal growth had been high at some time during the 5-day incubation following joint addition of alfalfa and bronopol. This was corroborated in a time-series experiment. In conclusion, the low fungal growth at high pH in an arable soil was caused to a large extent by bacterial competition, and not substrate limitation. (C) 2010 Elsevier Ltd. All rights reserved.

Publishing year

2010

Language

English

Pages

926-934

Publication/Series

Soil Biology & Biochemistry

Volume

42

Issue

6

Document type

Journal article

Publisher

Elsevier

Topic

  • Biological Sciences

Keywords

  • Acetate incorporation into ergosterol
  • Decomposer interaction
  • Soil pH
  • Bacterial growth
  • Fungal-to-bacteria ratio
  • Fungal growth
  • Leucine
  • incorporation

Status

Published

Project

  • Interaction between fungi and bacteria in soil
  • Carbon drivers and microbial agents of soil respiration
  • Effect of environmental factors on fungal and bacterial growth in soil
  • Microbial carbon-use efficiency

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 0038-0717