The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Optimal bird migration revisited

Author

Summary, in English

Using optimality perspectives is now regarded as an essential way of analysing and understanding adaptations and behavioural strategies in bird migration. Optimization analyses in bird migration research have diversified greatly during the two recent decades with respect to methods used as well as to topics addressed. Methods range from simple analytical and geometric models to more complex modeling by stochastic dynamic programming, annual routine models and multiobjective optimization. Also, game theory and simulation by selection algorithms have been used. A wide range of aspects of bird migration have been analyzed including flight, fuel deposition, predation risk, stopover site use, transition to breeding, routes and detours, daily timing, fly-and-forage migration, wind selectivity and wind drift, phenotypic flexibility, arrival time and annual molt and migration schedules. Optimization analyses have proven to be particularly important for defining problems and specifying questions and predictions about the consequences of minimization of energy, time and predation risk in bird migration. Optimization analyses will probably also be important in the future, when predictions about bird migration strategies can be tested by much new data obtained by modern tracking techniques and when the importance of new trade-offs, associated with, e.g., digestive physiology, metabolism, immunocompetence and disease, need to be assessed in bird migration research.

Publishing year

2011

Language

English

Pages

5-23

Publication/Series

Journal of Ornithology

Volume

152

Document type

Journal article review

Publisher

Springer

Topic

  • Biological Sciences

Keywords

  • Flight
  • Stopover
  • Wind
  • Routes
  • Timing

Status

Published

ISBN/ISSN/Other

  • ISSN: 2193-7206