The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Role of histidines in the binding of violaxanthin de-epoxidase to the thylakoid membrane as studied by site-directed mutagenesis

Author

Summary, in English

Regulation of violaxanthin de-epoxidase (VDE) involves a conformational change at low lumenal pH, followed by binding of the enzyme to the thylakoid membrane. The role of histidine residues in this process was studied by release of unbound enzyme from thylakoids upon sonication, on a pH scale from 4.7 to 7.1. The co-operativity for binding of spinach VDE (four histidines) to the membrane was found to be 3.8, with respect to protons, and had an inflexion point at pH 6.6, whereas VDE from wheat (three histidines) showed a co-operativity of 2.9 and had an inflexion point at pH 6.2. Mutant forms of VDE were constructed and probed for their binding to the outside of thylakoid membranes. With one or two histidines substituted for alanine or arginine, a lower co-operativity (1.6-2.3) was found, compared with the wild type. Based on these findings, and that the pKa value for histidine is within the range where the VDE binding takes place, we propose that protonation of the histidine residues at low pH induces the conformational change of VDE, and hence indirectly regulates binding of the enzyme to the thylakoid membrane.

Publishing year

2004

Language

English

Pages

337-343

Publication/Series

Physiologia Plantarum

Volume

122

Issue

3

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Biological Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0031-9317