The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Design of highly-parallel, 2.2Gbps throughput signal detector for MIMO systems

Author

Summary, in English

This paper presents a field-programmable gate array (FPGA) implementation of a new multiple-input multiple-output (MIMO) signal detection algorithm applicable to ultra-high throughput MIMO communication systems. The algorithm simplifies the computation significantly compared to traditional K-Best algorithm, and with negligible bit error ratio (BER) degradation. A highly-parallel structure is implemented on the Xilinx Virtex-4 (XC4VLX200) platform, which achieves 2.2 Gbps detection throughput and is about four times over previous implementation. Moreover, a pre-processing method is realized to reduce the number of multipliers inside the detector and shrinks the critical path delay down to 6.79 ns. Together with candidate-sharing-architecture to further save the hardware cost, a high speed, compact signal detector for MIMO systems is demonstrated.

Publishing year

2008

Language

English

Pages

742-745

Publication/Series

[Host publication title missing]

Document type

Conference paper

Publisher

IEEE - Institute of Electrical and Electronics Engineers Inc.

Topic

  • Electrical Engineering, Electronic Engineering, Information Engineering

Conference name

IEEE International Conference on Communications ICC 2008

Conference date

2008-05-19 - 2008-05-23

Conference place

Beijing, China

Status

Published

ISBN/ISSN/Other

  • ISBN: 978-1-4244-2075-9