The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Modelling the movement of a soil insect

Author

Summary, in English

We use a linear autoregressive model to describe the movement of a soil-living insect, Protaphorura armata (Collembola). Models of this kind can be viewed as extensions of a random walk, but unlike a correlated random walk, in which the speed and turning angles are independent, our model identifies and expresses the correlations between the turning angles and a variable speed. Our model uses data in x- and y-coordinates rather than in polar coordinates, which is useful for situations in which the resolution of the observations is limited. The movement of the insect was characterized by (i) looping behaviour due to autocorrelation and cross correlation in the velocity process and (ii) occurrence of periods of inactivity, which we describe with a Poisson random effects model. We also introduce obstacles to the environment to add structural heterogeneity to the movement process. We compare aspects such as loop shape, inter-loop time, holding angles at obstacles, net squared displacement, number, and duration of inactive periods between observed and predicted movement. The comparison demonstrates that our approach is relevant as a starting-point to predict behaviourally complex moving, e.g. systematic searching, in a heterogeneous landscape. (C) 2004 Elsevier Ltd. All rights reserved.

Publishing year

2004

Language

English

Pages

497-513

Publication/Series

Journal of Theoretical Biology

Volume

231

Issue

4

Document type

Journal article

Publisher

Academic Press

Topic

  • Ecology
  • Probability Theory and Statistics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1095-8541