The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Acoustic Trapping: System Design, Optimization and Applications

Author

Summary, in English

Manipulation, separation and trapping of particles and cells are very important tools in today's bioanalytical and medical field. The acoustic no-contact trapping method presented at earlier MSW 2004 provides a flexible platform for performing cell and particle assays in a perfusion-based microsystem. To further develop the system microfabricated glass channels are now used, resulting in shorter fabrication times and a very inert channel material. The fluidic design has been revised to minimise the risks of leaking and hydrodynamic focusing has been incorporated to ensure a high trapping efficiency. A change of piezoelectric materials has resulted in less thermal losses in the material, higher reproducibility and shorter manufacturing time. The trapping force was estimated by calculating the fluid force exerted on a single particle levitated in the standing wave as a reference. The temperature increase due to the losses in the transducer was measured using a fluorescent dye, indicating a maximum temperature increase of 10 degrees Celsius. Live cells have been trapped and shown to be viable while still suspended in the standing wave, thus making it possible to do on-line studies on, for example, drug response of cell populations.

Publishing year

2006

Language

English

Pages

33-33

Publication/Series

Proceedings of the sixth Micro Structure Workshop

Volume

1

Document type

Conference paper

Topic

  • Medical Engineering

Conference name

Micro Structure Workshop 2006

Conference date

2006-05-09 - 2006-05-10

Conference place

Västerås, Sweden

Status

Published