The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Spatial distributions of plants and gross N transformation rates in a forest soil

Author

Summary, in English

1 This work demonstrates that spatial distribution of understorey vegetation and gross N transformation rates in a mixed beach-oak forest is closely correlated within a distance of a few metres. The findings imply that plant diversity and productivity have a major influence on gross rates of N transformation and vice versa.

2 A geostatistical analysis was used to evaluate the spatial relationships between abundance and species composition of the understorey vegetation and in situ gross N mineralization, NH4+ immobolization and nitrification rates.



3 The gross N transformation rates and the plants spatial variation were correlated within the forest, but plant distribution was more dependent on the fraction of mineralized N that was nitrified than on individual N transformation rates.



4 The total cover of the understorey vegetation varied more in space than the species composition, and was higher in areas with high N transformation rates.



5 Plant species benefiting from high net nitrification rates were more common in areas with a low activity of mineralizing and nitrifying microorganisms, possibly because the net and gross rates were independent of each other. In fact, those species occurred most often in areas in which a large fraction of mineralized N was nitrified.



6 Beech and oak trees also had an effect on the spatial variation of the understorey vegetation. Beech trees provided conditions more suitable for plants benefiting from NO3-, whereas the vascular plant cover was greater under oak trees, probably in response to a higher light interception than under beech trees.



7 Oak generally had a positive impact on gross N transformation rates compared with beech, perhaps reflecting differences in litter quality and climate caused by the two species.



8 The influence of trees alone could not explain the full magnitude of the variation of N transformation rates or the presence of overlapping areas with high mineralization and immobilization rates. These were probably caused by other factors, such as soil moisture content.



9 This work sheds new light on the small-scale spatial links between above-ground plant diversity and abundance, and below-ground microbial N transformations.

Publishing year

2006

Language

English

Pages

754-764

Publication/Series

Journal of Ecology

Volume

94

Issue

4

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Biological Sciences
  • Ecology

Status

Published

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 1365-2745