The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Uniform and position-controlled InAs nanowires on 2('') Si substrates for transistor applications.

Author

Summary, in English

This study presents a novel approach for indirect integration of InAs nanowires on 2('') Si substrates. We have investigated and developed epitaxial growth of InAs nanowires on 2('') Si substrates via the introduction of a thin yet high-quality InAs epitaxial layer grown by metalorganic vapor phase epitaxy. We demonstrate well-aligned nanowire growth including precise position and diameter control across the full wafer using very thin epitaxial layers (<300 nm). Statistical analysis results performed on the grown nanowires across the 2('') wafer size verifies our full control on the grown nanowire with 100% growth yield. From the crystallographic viewpoint, these InAs nanowires are predominantly of wurtzite structure. Furthermore, we show one possible device application of the aforementioned structure in vertical wrap-gated field-effect transistor geometry. The vertically aligned InAs nanowires are utilized as transistor channels and the InAs epitaxial layer is employed as the source contact. A high uniformity of the device characteristics for numerous transistors is further presented and RF characterization of these devices demonstrates an f(t) of 9.8 GHz.

Publishing year

2012

Language

English

Publication/Series

Nanotechnology

Volume

23

Issue

1

Document type

Journal article

Publisher

IOP Publishing

Topic

  • Nano Technology

Status

Published

Research group

  • Nano

ISBN/ISSN/Other

  • ISSN: 0957-4484