The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Carrier control and transport modulation in GaSb/InAsSb core/shell nanowires

Author

Summary, in English

We report transport studies of GaSb/InAs core/shell nanowires. It is shown that with increasing InAs shell thickness, it is possible to tune the carrier concentrations and transport in the structures from p-type (core-dominated) to n-type (shell dominated). For nanowires with an intermediate shell thickness (5-7 nm), we show that the transport is ambipolar, such that an applied top-gate potential can provide further control of carrier type and transport path. In this range, the nature of the GaSb-InAs junction also changes from broken gap (semimetal) to staggered (narrow bandgap) with a small decrease in shell thickness. From a device point of view, we demonstrate that the presence of a thin (<3 nm) InAs shell improves p-type GaSb nanowire transistor characteristics. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749283]

Publishing year

2012

Language

English

Publication/Series

Applied Physics Letters

Volume

101

Issue

10

Document type

Journal article

Publisher

American Institute of Physics (AIP)

Topic

  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0003-6951