The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Hybrid Modelling of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics—A Survey

Author

Summary, in English

The Homogeneous charge compression ignition (HCCI) principle holds promise to increase efficiency and to reduce emissions from internal combustion engines. As HCCI combustion lacks direct ignition timing control and auto-ignition depends on the operating condition, control of auto-ignition is necessary. Since auto-ignition of a homogeneous mixture is very sensitive to operating conditions, a fast combustion phasing control is necessary for reliable operation. To this purpose, HCCI modelling and model-based control with experimental validation were studied. A six-cylinder heavy-duty HCCI engine was controlled on a cycle-to-cycle basis in real time using a variety of sensors, actuators and control structures for control of the HCCI combustion in comparison. Combustion phasing control based on ion current was compared to feedback control based on cylinder pressure. With several actuators for controlling HCCI engines suggested, two actuators were compared, dual fuel and variable valve actuation (VVA). Model-based control synthesis requiring dynamic models of low complexity and HCCI combustion models were estimated by system identification and by physical modelling the physical models aiming at describing the major thermodynamic and chemical interactions in the course of an engine stroke and their influence on combustion phasing. The models identified by system identification were used to design model-predictive control (MPC) with several desirable features and today applicable to relatively fast systems, the MPC control results being compared to PID control results. Both control of the combustion phasing and control of load-torque with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure, were included.

Publishing year

2007

Language

English

Pages

1814-1848

Publication/Series

International Journal of Control

Volume

80

Issue

11

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Other Mechanical Engineering
  • Control Engineering

Status

Published

Project

  • HYCON—Hybrid Control: Taming Heterogeneity and Complexity of Networked Embedded Systems
  • Competence Centre for Combustion Processes

ISBN/ISSN/Other

  • ISSN: 0020-7179