The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Influence of doping on the electronic transport in GaSb/InAs(Sb) nanowire tunnel devices

Author

Summary, in English

The effect of various doping profiles on the electronic transport in GaSb/InAs(Sb) nanowire tunnel diodes is investigated. Zn-doping of the GaSb segment increases both the peak current density and the current level in reverse bias. Top-gated diodes exhibit peak current modulation with a threshold voltage which can be controlled by Zn-doping the InAs(Sb) segment. By intentionally n-doping the InAs(Sb) segment degenerate doping on both sides of the heterojunction can be achieved, as well as tunnel diodes with peak current of 420 kA/cm(2) at V-DS = 0.16V and a record-high current density of 3.6 MA/cm(2) at V-DS = -0.5V. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739082]

Publishing year

2012

Language

English

Publication/Series

Applied Physics Letters

Volume

101

Issue

4

Document type

Journal article

Publisher

American Institute of Physics (AIP)

Topic

  • Electrical Engineering, Electronic Engineering, Information Engineering
  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0003-6951