The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Genetics of personalities: no simple answers for complex traits

Author

Summary, in English

Identifying the genes that underlie phenotypic variation in natural populations, and assessing the consequences of polymorphisms at these loci for individual fitness are major objectives in evolutionary biology. Yet, with the exception of a few success stories, little progress has been made, and our understanding of the link between genotype and phenotype is still in its infancy. For example, although body length in humans is largely genetically determined, with heritability estimates greater than 0.8, massive genome-wide association studies (GWAS) have only been able to account for a very small proportion of this variation (Gudbjartsson et al. 2008). If it is so difficult to explain the genetics behind relatively 'simple' traits, can we envision that it will at all be possible to find genes underlying complex behavioural traits in wild non-model organisms? Some notable examples suggest that this can indeed be a worthwhile endeavour. Recently, the circadian rhythm gene Clock has been associated with timing of breeding in a wild blue tit population (Johnsen et al. 2007; Liedvogel et al. 2009) and the Pgi gene to variation in dispersal and flight endurance in Glanville fritillary butterflies (Niitepold et al. 2009). A promising candidate gene for influencing complex animal personality traits, also known as behavioural syndromes (Sih et al. 2004), is the dopamine receptor D4 (DRD4) gene. Within the last decade, polymorphisms in this gene have been associated with variation in novelty seeking and exploration behaviour in a range of species, from humans to great tits (Schinka et al. 2002; Fidler et al. 2007). In this issue, Korsten et al. (2010) attempt to replicate this previously observed association in wild-living birds, and test for the generality of the association between DRD4 and personality across a number of European great tit populations.

Publishing year

2010

Language

English

Pages

624-626

Publication/Series

Molecular Ecology

Volume

19

Issue

4

Document type

Journal article (letter)

Publisher

Wiley-Blackwell

Topic

  • Biological Sciences

Keywords

  • DRD4
  • great tit Parus major
  • behavioural syndromes
  • novelty seeking

Status

Published

Research group

  • Molecular Ecology and Evolution Lab

ISBN/ISSN/Other

  • ISSN: 0962-1083