The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The impact of forest residue removal and wood ash amendment on the growth of the ectomycorrhizal external mycelium

Author

Summary, in English

Intensive harvesting of forest residues for energy production may lead to the depletion of organic matter and mineral nutrients in the forest floor. In order to restore nutrient content wood ash has been suggested as a fertiliser. Ectomycorrhizal (EM) fungi arc involved in the nutrient uptake of forest trees and this study investigates the influence of intensive harvesting and wood ash fertilisation on the external EM mycelium in forest soil. Nylon mesh bags filled with sand were buried in September 1997 in field plots which had or had not been intensively harvested. The effect of wood ash on the production of external EM mycelium was studied in mesh bags amended with wood ash. Mesh bags were retrieved in May and October 1998. The relative amount of fungal mycelia in the mesh bags was estimated with phospholipid fatty acid analysis. The fungi colonising the mesh bags were mainly (> 90%) ectomycorrhizal. Fungal biomass in the mesh bags was low in the spring but high in the autumn. No significant effect on EM fungal biomass was observed in the mesh bags collected from intensively harvested plots compared with those from control plots, but wood ash amendment resulted in 2.4 times more EM fungal biomass (P < 0.05). The effect of external EM mycelium on the dissolution of wood ash was studied in mesh bags filled with wood ash, using mesh bags buried in soil isolated from roots as EM-free controls. The external EM mycelium had no effect on the dissolution rate of the wood ash. 80% of the potassium was lost from the wood ash within a month, whereas no phosphorus was lost during the experimental period (up to 13 months). (C) 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Publishing year

2002

Language

English

Pages

139-146

Publication/Series

FEMS Microbiology Ecology

Volume

39

Issue

2

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Biological Sciences

Status

Published

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 1574-6941